C18 Reversed-Phase Silica Gel Flash Chromatography – A Visual Walkthrough

Jeffrey J. Jackson Zakarian Group UC Santa Barbara June 11th, 2015

The Stationary Phase

- Fluka 60756-50G
- C₁₈-Reversed
 phase silica gel
 - For column chromatography, fully end-capped
 - 15-25 um particle size
 - 100 Å pore size

Price Comparison

- C18 Reversed-Phase SiO₂ Fluka (Sigma-Aldrich)
 - \$250 / 50 g
- Normal-Phase SiO₂ Grace DAVISIL (Fisher)
 - \$393 / 25 kg
 - \$0.79 / 50 g

C18 RP TLC Plates

- EMD Millipore 15685
- TLC Silica gel 60 RP-18 F₂₅₄s
- 25 count
 - 5 x 10 cm

Comparing Price

- C18 Reversed-Phase TLC EMD Millipore (EMD)
 - \$248 / 25 (5 x 10 cm) plates
 - \$9.90 / 1 (5 x 10 cm) plate
- Normal-Phase TLC EMD Millipore (EMD)
 - \$150 / 25 (20 x 20 cm) plates
 - \$0.75 / 1 (5 x 10 cm) plate

TLC Plates

- Cut into 1 cm x 5 cm plates
- Will take longer to run that normalphase TLC plates
- Stain just like NP TLC
 - Dry mobile phase
 from plate very well
 before developing

Example of TLC

50:50 MeCN:H₂O w/ 0.1% TFA

 Add 1 cm of sand and level it

- Add 2 4 in of the stationary phase
- Flush with HPLCgrade or distilled MeOH to pack
 - Too fine to pack dry

 Leave a little MeOH to level the silica gel

 Fully packed and ready for last sand layer

 After lowering MeOH level, add 2 cm of sand

- After lowering MeOH level, add 2 cm of sand
- Wash sand down and flush with solvent system you are going to use
- The column is ready for loading

Loading the Column

- Load crude material onto column using pure H₂O
- If insoluble, use solvent system you will be running
- Use sonicator to help with dissolution if solubility is low

Running the Column

- When adding solvent, be careful not to disturb sand-stationary phase layer
- CAUTION Generates much higher pressures than normal-phase flash chromatography
 - Use in hood with sash lowered while running, as always
- You can monitor fractions using NP TLC if R_f values are high enough (try 100% EtOAc w/0.5% AcOH

Running the Column

 Sometimes you can see the different products separating

Br

Br

N =

HO₂C

ΟН

Collecting Fractions

- 13 mm i.d. column: 1-2 cm*
- 20 mm i.d.column: ¹/₃*
- 25 mm i.d. column: ¹/₂*

*13 x 100 mm test tubes

Cleaning the Column

 After the separation is complete, clean column for next separation

Cleaning the Column

 Flush with MeOH to wash the column

Cleaning the Column

 Ready for the next separation

The Solvents

NP Solvent	RP Equivalent
Hexanes	H ₂ O
EtOAc	MeOH
MeOH	MeCN

- Typically start with
 - 50:50 MeOH:H₂O w/ 0.1% TFA
 - 50:50 MeCN:H₂O w/ 0.1% TFA
- Optimize to set $R_f = 0.3$ using RP TLC