Periodic Table of the Elements

1 H 1.00794																1 H 1.00794	² He 4.002602
³ Li	⁴ Be											⁵ B	6 C	7 N	⁸ O	° F	Ne ¹⁰
6.941	9.012182											10.811	12.0107	14.00674		18.9984032	20.1797
11	12											13	14	15	16	17	18
Na 22.989770	Mg 24.3050											Al 26.981538	Si 28.0855	P 30.973761	S 32.066	Cl 35.4527	Ar 39.948
¹⁹ K ^{39.0983}	${\overset{20}{\text{Ca}}}_{_{40.078}}$	²¹ Sc 44.955910	${\overset{22}{{ m Ti}}}_{47.867}$	23 V 50.9415	²⁴ Cr ^{51.9961}	²⁵ Mn ^{54.938049}	26 Fe 55.845	27 CO 58.933200	28 Ni 58.6934	²⁹ Cu _{63.546}	³⁰ Zn _{65.39}	³¹ Ga _{69.723}	32 Ge 72.61	33 As 74.92160	³⁴ Se _{78.96}	35 Br 79.904	36 Kr 83.80
³⁷ Rb ^{85.4678}	38 Sr 87.62	39 Y 88.90585	${\overset{40}{\rm Zr}}_{91.224}$	41 Nb 92.90638	42 Mo 95.94		44 Ru 101.07	${\overset{45}{\rm Rh}}_{102.90550}$	$\overset{46}{\mathrm{Pd}}_{106.42}$	${\mathop{\rm A7}\limits_{107.8682}}^{47}$	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.90545	Ba 137.327	La 138.9055	$Hf_{178.49}$	Ta 180.9479	W 183.84	Re 186.207	Os 190.23	Ir 192.217	Pt 195.078	Au 196.96655	Hg 200.59	Tl 204.3833	Pb 207.2	Bi 208.98038	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		118
Fr (223)	Ra (226)	Ac (227)	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (266)	(269)	(272)	(277)		(289) (287)		(289)		(293)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa 1 231.03588	U 238.0289	Np (237)	Pu (244)	Am (243)	Cm (247)	Bk (247)	$Cf_{(251)}$	Es (252)	Fm (257)	Md (258)	No (259)	Lr (262)

S.E. Van Bramer, 7/22/99

1995 IUPAC masses and Approved Names from http://www.chem.qmw.ac.uk/iupac/AtWt/

masses for 107-111 from C&EN, March 13, 1995, P 35

112 from http://www.gsi.de/z112e.html

114 from C&EN July 19, 1999

116 and 118 from http://www.lbl.gov/Science-Articles/Archive/elements-116-118.html

OTS pKa, buffers, acid-base & UV tables

										-			
HI, HBr, HCl, HClO ₄ , HNO ₃			pKa	Acid	pKa	Acid	pKa	Base ph	Ka (of conj. acid				
hydronium	H₃O ⁺	H ₂ O	-1,74	C <u>H</u> 2(NO ₂)2	4	(CH ₃) ₃ CO	H 19	BuLi	45				
chlorique	HClO ₃	ClO ₃	-1	0112(1402)2	-	(0113)300	11 10	Bull	45				
trichloroéthanoïque	CCl₃COOH	CCl ₃ COO	0,7	CH3CO2H	5	PhCOCH	3 19	RMgBr	45				
oxalique	НООССООН	HOOCCOO	1,3	Ph3PCH2CO2E	Et 6	CH3COCH	H ₂ 20	PhLi	40				
sulfureux	H ₂ SO ₃	H ₂ SO ₃ ⁻	1,8	1 1131 01120021	0	0130001	13 20	1 1121					
hydrogénosulfate	HSO4	SO4 ²⁻	2	(CH ₃) ₂ CHNO ₂	8		20	NaH/KH	~37				
phosphorique		$H_2PO_4^2$	2,12	NCCH2CO2Et	9	C	H2 20	R ₂ NLi	36				
chloroéthanoïque hexaqua fer(III)	CH ₂ ClCOOH Fe(H ₂ O) ₆ ³⁺	CH_2CICOO^{-1} Fe(OH)(H ₂ O) ₅ ²⁺	2,86	HOOL2002Et			01	-					
fluorhydrique	HF	Fe(OF)(H ₂ O) ₅	3,17	CH ₃ CH ₂ NO ₂	9	Ph ₂ N <u>H</u>	21	NH2 ⁻	35				
cyanique	HOCN	OCN -	3,66	CH ₃ NO ₂	10	(CH ₃) ₃ CC	OCH ₃ 21	CH ₃ SOCH ₂	-Na ⁺ 35				
méthanoïque	НСООН	HCOO -	3,75			\wedge	\wedge						
lactique	СН ₃ СНОНСООН	CH3CHOHCOO	3,86	PhOH	10		23	Ph ₃ C ⁻	31				
benzoïgue		C ₆ H ₅ COO	4,2	Me ₃ NH ⁺	10	► C	H2	tBuO ⁻	19				
anilinium	$C_6H_5NH_3^+$	C ₆ H ₅ NH ₂	4,62	INIC 3I VII	10			ibuo					
éthanoïque	CH ₃ COOH	CH ₃ COO	4,75	CH3COCH2CO	D ₂ Et 11	CH ₃ SO ₂ C	H ₃ 23-7	EtO ⁻	18				
propanoïque	CH ₃ CH ₂ COOH	CH ₃ CH ₂ COO	4,87	CH3CH(COCH	13)2 11	CH ₃ CO ₂ E	t 25	MeO ⁻	17				
hexaqua aluminium(III)	$Al(H_2O)_6^{3+}$	$Al(OH)(H_2O)_5^{2+}$	4,95	CH3CH(COCF	3/2			Meo					
pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	5,16	CH ₂ (CN) ₂	11	CH ₃ CN	25	HO	16				
hydroxylammonium	NH ₃ OH ⁺	NH ₂ OH	6	CH ₃ SH	12	H-C≡C-I	H 25	Na ₂ CO ₃	12				
dioxyde de carbone	CO ₂ + H ₂ O	HCO ₃	6,35	CH3OLL	12			Na2003	12				
sulfhydrique	H ₂ S	HS ⁻	7	$CH_2(CO_2Et)_2$	13	PhNH ₂	27	∧ N	CH ₂)n 11-13				
dihydrogénophosphate	H ₂ PO ₄	HPO4 ²⁻	7,2	/N		Ph ₃ CH	31		CH ₂)n 11-13				
hypochloreux	HClO	ClO -	7,3		15			n = 1,3 DBI	N, DBU				
ammonium	NH_4^+	NH₃	9,2	CH2		Ph ₂ CH ₂	33						
borique	H_3BO_3	$H_2BO_3^-$	9,23	H ₂ O	16	CH ₃ SOCH	H ₃ 35	N -N	Me ₂ 10-12				
cyanhydrique	HCN	CN ⁻	9,31										
anilinium	C ₆ H₅NH ₃ ⁺	C ₆ H ₅ NH ₂	9,37	PhCH2COPh	16	NH ₃	35	PhO ⁻	10				
triméthylammonium	$(CH_3)_3NH^+$	(CH ₃) ₃ N	9,9	02N	-NHPh 16	(CH ₃ CH ₂)	NH 36	R ₃ N	10				
phénol	C ₆ H₅OH	C ₆ H₅O [°]	10		_								
hydrogénocarbonate	HCO ₃ ⁻	CO ₃ ²⁻	10,32	CH ₃ OH	17	[(CH ₃) ₂ CH	H] ₂ N <u>H</u> 36	ImH	7				
éthylammonium	$C_2H_5NH_3^+$	$C_2H_5NH_2$	10,67		47	PhCH ₃	37	NaHCO ₃	7				
méthylammonium	$CH_3NH_3^+$	CH ₃ NH ₂	10,72	CH3COCH2CI	17	100 000 AND 20 1 0		Annual and a state					
diméthylammonium	(CH ₃) ₂ NH ₂ ⁺ HPO₄ ²⁻	(CH ₃) ₂ NH PO₄ ³⁻	11,02 12,3	CH3CH2OH	18	CH ₂ =CH-	С <u>Н</u> 3 38	PhNEt ₂	6				
hydrogénophosphate	HPO₄ HS [™]	PO ₄ S ²⁻	12,3		10	Ph <u>H</u>	40	pyridine	5				
hydrogénosulfure eau	H ₂ O	OH T	15,74	(CH ₃) ₂ CHOH	18			5.00					
eau	1120		13,74	CH ₃ PPh ₃	18	R- <u>H</u>	45-52	AcO	5				
Buffers	Conc, NTP	рН	1										
Sat NH₄Cl	~0.7M	~4.5	1	Phenyl- H	NH ¹⁺ Cl	CH ₃ CO ₂ ⁻	OCH ₃ OH	CN CO ₂ H	COR CCH	NH_2	CHO	NO ₂	C=CH
Sat NaHCO ₃	~0.9M	~8	1	λ _{max} 254	254 260	261 268	269 270	271 273	276 278	280	280	280	282
10% KH ₂ PO ₄	0.75M	~3.6		ε 204	169 190	225 560	1480 1450	1000 970	800 6500	1430	1400	1000	740
. : ! /2								Brock Gra	des I (1.5% H ₂ O), p	H (0) 5% 20 9	susn' mech		
Acid/Base	wt %	ρ (g/mL)	MW	mL=>1M	Alumina:	%H ₂ O to add to	Approx water %					l	
Conc H ₃ PO ₄ : 22M	85%	1.69	98	45	Brockmann #	Br.# I	L		0mm sieve, 58Å po				
Conc H ₂ SO ₄ : 18M	95-98%	1.84	98	56	<u> </u>	3	4-4.5	Grade	5016-A 507-C		504-C	l	
Glacial AcOH : 17.5M	99.7%	1.05	60	57		6	7-7.5	Type	basic neutr 9.5 7.5	acid	wk acid	l	
Conc HNO ₃ : 16M	68-70%	1.41	63	63	IV	10	11-11.5	рН	9.5 7.5	4.5	6.0	1	
Conc HCI : 12M	36-38%	1.18	36.5	83	V	15	16-16.5						
Conc NaOH : 19M	50%	1.53	40	53 67		grades, shake grad							
0 10 453					I								
Conc NH ₄ OH : 15M Conc KOH : 11.7M	28-30% 45%	0.90	35 57	85		O. equilibrate in clo and Fieser, Reagen							

0⁻ 287 2600

OTS DRY SOLVENT TABLE	Initial	3 Å MS 24 {72}h 5 (10) [20]% m/v	4Å MS 24 [72] h 5-10% m/v	SiO ₂ (28-200) 22 Å, col	act. neutr Al ₂ O ₃	CaH ₂ 24h	KOH 10% 24h	P ₂ O ₅	Refs	Notes
Benzene	100		0.03	0.3	0.01	0.2 d			2	15 frac dist
Toluene	225	(1)	0.01	2					1,4	31 Na / benzo
DCM	22	(0,1)	0.07	1		13 d			1,4	
EtOAc	2500		128						4	
THF	108	(28) [15] 6 seq	28 seq ex 1000	56	6				1	43 Na / benzo
Dioxane	2300	19	40 [30]	1300	1700	30 nd	150 nd		2, 3	
Acetone	2750	150 c! iot	331 c! iot	887 c!				c!	3	Base ^H ₂ O; +B ₂ O _{3:} 107
MeCN	2800	50; seq 0.5	[450]	1300	1600 (6 pd)	1900 nd	2200 n/d, c	9 nd	2,1	Base degrad (K2CO3)
DMF	2860	167 {98; 1.5 seq}	134		1970	227nd, 94d	1100 p	105nd, 2d	3	
DMSO	2560	448 {269; seq+}	470 [10 seq]		1900	1800 d	2130 n/d, c	1.4 c	3	260 frac dist
MeOH	1100	95 b, 10 seq3; 950 p!	440			125 nd	pd? 33 d ¹		3,1	Mg / I ₂ : 97, pd54, (12+)
EtOH	1500	18 p, 262 b [120]; 8 wk	400			99 nd	26 d; - nd ³		1>3	Mg / I2 : 50
tBuOH	1030	428; 160 wk	406			20 d; 406 nd				
Glycol	2700	1900; 360p	1900						3	1080 dist; 65 benz azeo
ру	2500	117	106 (0.3 seq)	900	1300	39 nd	156 p		3	
2pyMe	2500	55				84 nd	176 p		3	40 benz azeo
2,6pyMe ₂	2500	200	250 (128 seq)			250 nd	325 p		3	
2,4,6pyMe ₃	2500	47				130 nd	27 p		3	
NEt ₃	2500	33	33	451	223	68	37 p		3	
iPr₂NH	2500	<25	<25			150	750 p		3	
1,3-diamprop	2500	<25	<25			500	1370 p !		3	
Et₂O	1.47wt%	6 H₂O if saturated; @ 15mi	n, Na ₂ SO ₄ 1.2%, 4Å	b 0.5%, K ₂ CO ₃ 0	.4%, MgSO ₄ 0.	3%, CaCl ₂ 0.2%,	4Å p 900ppn	n. Then seq 4	lÅ: 2p	pm by 96h.

Abbrev

<u>Refs</u>

1: Bradley JOC, 2010, 75 (24), pp 8351–8354

2: Burfield et al., JOC 1977, 42, 3060.

3: Burfield: JOC 1981, 46, 629; JOC 1978, 43, 3966; JOC 1984, 49, 3852; JOC 1983, 48, 2420 ; J. Chem. Educ. 1982, 59, 703.

4: Burfield et al., Journal of Applied Chemistry and Biotechnology 1978, 28, 23.

.aCl ₂ 0.2%	, 4A p 900ppm. Then seq 4A: 2
reviations	
d	distilled
nd	not distilled
с	contaminates even distillate
n/d	distilled or not
р	powder
b	beads
pl	pellet
seq	sequentially dried
+	see ref for better tech
wk	one week drying time
iot	increases over time
ex	from a different init conc

					······································				
Table II.		fficiency i Amines ^b	n the Drying ^a	Agent	Capacity ^a	Spee	ed. ²⁰	Comme	nts
			ntent, ^c ppm	CaSO .	1/2 H ₂ O	Very fa	st (1)	Sold commercia	lly as "Drierite
Al ₂ O, silica gel	Et,N ^d 37 (23) ^f 33 (28) ^h 34 68 (34) ^f 83 89 (53) ^f 98 (80) ^f 165 (56) ^f 223 (223) ^f 451	(Me,CH), NH [#] <25 <25 150 ⁱ <25 50 <25 ⁱ	NH,(CH,),NH, * 1370 (3700) ² <25 500 ⁱ 150 1100 <25 ⁱ >2500	-				<pre>with or with. tor; very ef the indicato. but turns pi: H₂O (capacity ful in tempe: to +86°. Son leach out, o:</pre>	but a color indi ficient. When d r (CoCl ₂) is blu nk as it takes o y CoCl ₂ •6H ₂ O); u rature range -50 me organic solve r change the col stone, alcohols,
CaSO,				CaCl ₂	6 H ₂ O	Very fa	st (2)	hydrocarbons	ient; use only f and alkyl halid
Table II. Efficie	DMF	cants in the				1		reacts with r compounds).	tes, complexes, many N and O
		content, p	pm	MqSO ₄	7 H₂O	Fast (4)	Excellent gener	cal agent: very
desiccant A molecular sieves 206 2aH ₂ A molecular sieves	500 879	105 227 10	98 1.5° 2 ^d 02 94 ^d 08		, 1120	1000 (7		inert but may (avoid with v	y be slightly ac very acid-sensit May be soluble
COH (powdered) 203 200 200 1203 2304 2203 2203	$\begin{array}{cccc} H \left(powdered \right) & 1360 & 1110 & 303^{d} \\ 0 & 890^{\bullet} \\ 0 & 2060 & 1520 & 1140 \\ 0 & 2090 & 03 & 1970 \\ 03 & 1970 & 030 & 1420 \\ 03_{3} & 2500 & 030 & 1420 \\ \end{array}$		Molecular Sieve 4A	High	Fast (3	0)	more common a (see below fo	eves). Sieve 3A	
^a Static drying mod bading 5% w/v; initi Sequentially dried s or 24 h followed by d	al water conta ample, 72 h. •	ent 2860 pp	om (0.286% w/w).	Na ₂ SO ₄	10 H ₂ O	Slow (2	90)		high capacity; s predrying, but
Table IV. Efficie	ncy of Desic Acetone	cants in th	e Drying [°] of	K ₂ CO ₃	2 H ₂ O	Fast		Good for esters and especiall use with acid	;, nitriles, keto y alcohols; do n lic compounds.
desiccant		idual solver content, p 24 h 72	other h conditions 18 ^{e,d} 47 ^{e,e}	NaOH, КОН	Very high	Fast		Powerful, but u ert solutions insoluble; es amines.	ased only with in in which agent specially good fo
A molecular sieves CuSO4 (anhydrous) A molecular sieves CaSO4 SaO 2 ₂ O5 K ₂ CO ₃	1910 j	972 5	107/ 22# 322 ^k 79 1700 ^k 20 1970/	H ₂ SO ₄	Very high	Very fas		carbons or ha olefins and c compounds).	lides (will remo
• Static drying mo oading 5% w/v; initi	des unless spe	cified other	wise. ^b Desiccant		Table I.	Desiccant Efficien		ng ^{a,b} of a Pyridine ^c Series water content, ^d ppm	
					destance		2-met		2,4,6-trimethyl-
nless specified offi 0.289% w/w). ^d Stirr Stirred for 24 h and Contamination (2% Contamination (12	distilled. / Dr) by mesityl (oxide. ^h Fra	ctionated sample.	Cal CaC BaC 4A	2,	pyridine 39 (14) ^e 44 (10) ^e 101 106 (0.3) ^f	pyric 8 7 2	line pyridine 4 248 (138) ^e 1 519 7 360	2,4,0-trimetnyi- pyridine 132 8 33
le V. Comparison Dioxar	ie and Aceto	uitrile.		3A ben	sièves zene azeotrope H powder	106 (0.3) 117 125 152	5	207	47 390
		dual solven content, p		Na CaO		388 962	17		27
desiccant	dioxa		etonitrile	silic Al, C	a gel	926		935	
CaSO, ^b CaCl ₁ ⁵ 3A molecular sieve 4A molecular sieve		1	180 d 52 450	^a Static drying loading 5% w/v; i	moder unless specifie.	1306 I otherwise. ^b Wa 500 ppm (0.25% y	ter content ass w/w). ^d 24-h c	ayed by the radiotracer tech lrying times unless specified	nique. ^c Desiccant otherwise. ^c 168-h

Table L Desiccant Efficiency in Drying^{s, b} of Some Common Lower Alcohols^c

		residual wat	ter content, ppm	
desiccant	methanold	ethanol	2-butanol	tert-butyl alcohol#
SA sieves (bead)	95	99	645 (9) ^h	428 (160) ¹
3A sieves (powder) ^J	940	18	14	13
Mg/I, *	97 (12) ¹	50 (53) ^m	••	10
CaH,	125	99	17"	406 (20)°
Na ^p		1800"	24007	406 (10)°
Na/dicarboxylic acid ester ^q		927	367	400 (10)
4A sieves (bead)	440	401	••	406
5A sieves (bead)	475	875		100
CaC.	490	333 (199)"	409	430 ⁿ (662) ^o
BaO	1000			400 (001)
Ca	1000			860
K,CO,				750
CaO	1	-		770
KOH powder	-			
ion exchange resin		,		640

⁵ Static drying modes unless specified otherwise. ^b Water content assayed by the Karl Fischer method. ^c Deciccant loading 5% w/w with a drying period of 24 h unless specified otherwise. ^e Initial water content 1010 ppm. ^c Initial water content 1500 ppm. ^f Initial water content 1000 ppm. ^f Initial water content 1080 ppm. ^h 96-h drying period. ^f 168-h drying period. ^f Analysis was performed after settling of deciccant, 3-6 h. ^f Weight of magnesium in accord with general practice, i.e., 0.5% w/w. ¹ See text. ^m Weight of magnesium 2% w/w. ⁿ Distilled sample. ^o Initial water content 1670 ppm, distilled sample. ^p Weight of sodium 3% w/w. See ref 32. ^c Ratio of sodium to 2-butyl succinate for 2-BuOH and to diethyl phthalate for ethanol in accord with general practice (see ref 7c), i.e.; Ns, 0.3 mol L⁻¹; dicarboxylic acid ester, 0.14 mol L⁻¹. ^f Stirred sample. ^s No apparent drying.

Table III. Efficiency of Desiccants in the Drying" of Me2SOb residuel solvent water content. DDM

desiccant	6 h	24 h	72 h		desiccant loading		residual	solvent water co	ontent, ppm		capacity
4A molecular sieves	978	471	332 269	desiccant	% w/v	5 min	15 min	30 min	60 min	360 min	% w/w
3A molecular sieves	1050	448	269	CaSO,	10 ^b		11400	9200	10200	10700	2.8-3.9
ione				•	20*	6400	3800	2100	10200	10/00	4.5
205					20	9700	7500	5800			3.1
2O3	1500		1820	CaCl ₂	55			2100	2100	850	19.6
aH2	1560	1330	1770	-	10		2400	2100	1900	390	10.1
aO	1450 2060	1990	1740		20°	2100	1400	900	1000	000	4.9
aO 12O3 52CO3 50H (powdered) aSO4	1840 2280 2130 ^h 2140	1900 2200	1920	^e Initial water conte water absorbed per ur	nt = 14700 ppm; hit of desiccant ex	drying temper pressed as a p	ature = 22 °C. ercentage.	Activation temp	perature: ^b = 22	0 °C. °= 350 °C.	

^a Static drying modes unless otherwise specified. ^b Desiccant loading 5% w/v; i quentially dried sample, 72 h. ^d Fractionally distilled sample. ^a Distilled sample. ^f C for 24 h followed by distillation. ^h Yellow colored solutions.

*Initial water content = 2500 ppm; drying time 72 h. Activation temperature: b = 255 °C. e = 360 °C. Trying temperature 27-30 °C. e c2(c) induces a base-catalysed tritium exchange with accontribute which precludes determination;² desiccant loading = 5%

Table II. Desiccant Efficiency in Drying^{a, b} of 1,2-Ethanediol^c

Static drying modes unless specified otherwise.
 Water content assayed by the Karl Fischer method.
 Dessicant loading 5% w/w with a drying period of 72 h.
 Charles are content 2700
 Sch-drying period.
 GOO-h drying period.
 Analysis was performed after settling of desiccant, ~6 h.
 Table 11 Setting area

desiccant

GestCent 3A sieves (bead) 3A sieves (powder) MgSO₄ CaC₅ B₁O₅ BaO CaO CaO caO caO caO

distillation^h benzene szeotrope Mg Al residual water content, ppm

w/v.

OTS Elutropic Series	Dielec Const (€)	Dipole Moment (Debye)	bp 1 bar (°C)	Vap <i>p</i> NTP (mbar)	ρ mg/mL	MW (Da)	mp (°C)	Sol in 100g H ₂ O	H ₂ O Sol in 100g
Water	78.3	1.85	100	32	998.2	18.012	0	-	-
Acetic Acid	6.15	1.74	118	15	1049	60.052	16.5	misc	misc
Methanol	33.6	1.7	65	169	791.4	32.042	-98	misc	misc
Ethanol	24.3	1.69	79	79	789.3	46.068	-115	misc	misc
Isopropanol	18.3	1.66	83	58	786	60.095	-88	misc	misc
Pyridine	12.3	2.28	115	20	981.9	79.101	-42	misc	misc
Acetonitrile	3.88	3.92	82	119	785.9	41.052	-44	misc	misc
Dimethylsulfoxide	47	3.96	189	0.8	1101	78.133	18	misc	misc
Ethyl acetate	6.02	0.44	77	98	900.3	88.105	-84	8.3	3.3
Dioxane	2.21	0.45	101	45	1033	88.105	12	misc	misc
Acetone	20.7	2.88	56	308	784.5	58.079	-95	misc	misc
Tetrahydrofuran	7.58	1.75	65	216	883.3	72.106	-108	misc	misc
Dichloromethane	9.14	1.6	40	582	1327	84.933	-97	1.3	0.2
Chloroform	4.87	1.04	61	262	1479	119.378	-63	0.8	0.07
Diethyl ether	4.34	1.15	34.5	717	713.8	74.121	-116	7.5	1.3
Benzene	2.28	0	80	127	876.5	78.122	5.5	0.2	?
Toluene	2.38	0.37	111	38	866.8	92.139	-95	0.05	?
Carbon tetrachloride	2.2	0	77	152	1594	153.8	-23	0.08	0.01
Cyclohexane	2.02	0	81	130	773.9	84.159	6.6	<0.1	<0.1
Petroleum ether	~2	0	~40-60	~500	~650	~80	~ -130	?	?
n-Hexane	1.89	0	69	202	660.6	86.175	-96	0	0
n-Pentane	1.84	0	36	533	626.2	72.149	-130	?	?

Other

Methyl <i>t-</i> butyl ether	2.6	1.32	55	336	735.3	88.148	-109	?	?
Dimethylformamide	36.7	3.82	153	4	944.5	73.094	-61	misc	misc
1,2-dichloroethane	10.5	1.8	84	106	1176	98.959	-97	0.87	?
Triethylamine		0.7?	89	72	727.5	101.190	-115	13.3	?
Dimethylacetamide	37.8	3.72	165	1.8	0.9372	87.120	-19	?	?
t-Butanol	12.4	1.7	82	?	0.7812	74.12	26	misc	misc

ligroin: C₇C₁₁ @ 60-90°C: 55% alk, 30% cycloalk, 12% alkylbenz, 2% dicycloalk

Magic Eluants

1 - 1:10:90 NH4OH : MeOH : DCM

2 - 80:10:5:5 EtOAc : nBuOH : H2O : AcOH

Frozen Joints:

a) freeze, acetone, heat

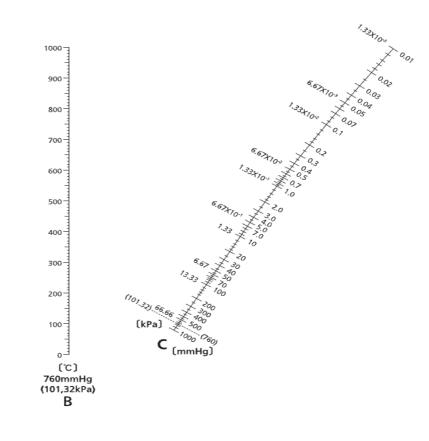

b) 10:5:5:3 chloral hydrate, glycerine, water, conc HCl

TABLE 7 (continued). MATERIALS FOR COOLING BATHS TABLE 7. MATERIALS FOR COOLING BATHS Π Composition O Temperature TABLE 6. PAIRS OF MISCIBLE SOLVENTS -52° Benzyl acetate or diethylcarbitol 01 0 -55° Diacetone Crushed ice -56° nP a-Octane -5° to -20 Ice-salt mintures . -60° Isopropyl ether Acetic acid: with chloroform, ethanol, ethyl acetate, methyl cyanide, petroleum ether, or water. Liquid ammonia --73° .330 Trichloroethylene or isopropyl acetate Ice (3.5-4 parts) - CaCL, 6H,O (5 parts) -40° to -50° Acetone: with benzene, butyl acetate, butyl alcohol, carbon tetrachloride, chloroform, -740 o-Cymene or p-cymene Solid CO, with ethanol -77° -720 Butyl acetate cyclohexane, ethanol, ethyl acetate, methyl acetate, methyl cyanide, petroleum ether or Solid CO, with chloroform or acetone -770 C -79° Isoamyl acetate -78° Solid CO, (powdered) water. -83° Pronvlamine 0 -100 Solid CO, with ethyl ether Ammonia: with ethanol, methanol, pyridine. -192° liquid air dy using liquid nitrogen instead of solid CO., this range can be extended. Aniline: with acetone, benzene, carbon tetrachloride, ethyl ether, n-heptane, methanol, methyl liquid nitrogen -106 -83.6° Ethol acetate 3 cyanide or nitrobenzene. Iternatively, the following liquids can be used, partially frozen, as cryostats, by adding solid CO, 5 utili -860 Methyl ethyl ketone Benzene: with acetone, butyl alcohol, carbon tetrachloride, chloroform, cyclohexane, ethanol, me to time to the material in a Dewar-type container and stirring to make a slush: -89⁰ n-Butanol methyl cyanide, petroleum ether or pyridine. -90° Nitroethane 13° p-Xyleae -910 Hentane Butyl alcohol: with acetone or ethyl acetate. 12° Diorane -920 n-Propyl acetate Carbon disulphide: with petroleum ether. 6° 5° Cyclohexane -93° 2-Nitropropane or cyclopentane S Renzene -940 Carbon tetrachloride: with cyclohexane. Ethyl beazene or herane -94.60 20 Formamide Acetone ... Chloroform: with acetic acid, acetone, benzene, ethanol, ethyl acetate, hexane, methanol or D -8.60 Methyl salicylate -05 10 Toluene -90 Hexane-2.5-dione pyridine. .07 Comene --10.5° Ethylene glycol -98° Methanol or methyl acetate Cyclohexane: with acetone, benzene, carbon tetrachloride, ethanol or ethyl ether. -990 -11.9° tert-Amyl alcohol Isobotyl acetate Dimethyl formamide: with benzene, ethanol or ether. -1049 -12° Cycloheptane or methyl benzoate O Cyclohexene -15° Benzyl alcohol -107 Dimethyl sulphoxide: with acetone, benzene, chloroform, ethanol, ethyl ether or water. Innontane -16.3° n-Octanol D -1089 1-Nitropropane Dioxane: with benzene, carbon tetrachloride, chloroform, ethanol, ethyl ether, petroleum ether, -18° 1.2-Dichlorobeazene -116° Ethanol or ethyl ether " -220 Tetrachloroethylene pyridine or water. -1170 Isoamyl alcohol Ethanol: with acetic acid, acetone, benzene, chloroform, cyclohexane, dioxane, ethyl ether, Methylcyclohexane -22.4° Butyl benzoate -126° Carbon tetrachloride -72.8° -131° n-Pentane -24.5° Diethyl sulphate pentane, toluene, water or xylene, -160^a Isopentane -25° 1.3-Dichlorobenzen Ethyl acetate: with acetic acid, acetone, butyl alcohol, chloroform, or methanol. -29° o-Xylene or pentachloro For other organic materials used in low temperature slush-baths with liquid Ethyl ether: with acctone, cyclohexane, ethanol, methanol, methylal, methyl cyanide, pentane or -30° Bromobenzene il. Chem. Eng. Data 11 124 1966]. NOTE that the liquid nitrogen should be a -320 m-Toluidine bat has been in contact with air will contain oxygen (see Table 8 for boilin petroleum ether. -32.6° Dipropyl ketone med Glycerol: with ethanol, methanol or water. Use high quality pure sitrogen, do not use liquid air or liquid nitrogen ti 38 4 4 4 4 9 4 Thiophen Methyl cyanide Hexane: with benzene, chloroform or ethanol. :ir for a long period (due to the dissolution of oxygen in it) which could Pyridine or diethyl ketone organic matter. If the quality of the liquid nitrogen is not known, or is un Methanol: with chloroform, ethyl ether, glycerol or water. Cyclohexyl chloride ue used. Chlomhenzene Methylal: with ethyl ether. m-Xylene Methyl ethyl ketone: with acetic acid, benzene, ethanol or methanol. Eh כ Ethyl malonate or n-butylamine -50° Nitrobenzene: with aniline, methanol or methyl cyanide. Pentane: with ethanol or ethyl ether. < TABLE 5. CUT Petroleum ether: with acetic acid, acetone, benzene, carbon disulphide or ethyl ether. D Phenol: with carbon tetrachloride, ethanol, ethyl ether or xylene. (dull -Pyridine: with acetone, ammonia, benzene, chloroform, dioxane, petroleum ether, toluene or C σ water. S Acetic acid (118°) Ethyl acetate (78°) Toluene: with ethanol, ethyl ether or pyridine. D (glacial) Water: with acetic acid, acetone, ethanol, methanol, or pyridine. Ethyl benzoate (98°/19mm) BP 5 Acetone (56°) × Xylene: with ethanol or phenol. Ethylene glycol (68°/4mm) Acetylacetone (139°) Formamide (110°/10mm) J Benzene (80°) Glycerol (126º/11mm) _ Benzyl alcohol (93º/10mm) Isoamyl alcohol (131°) S n-Butanol (118°) E 18. SOME COMMON IMMISCIBLE OR SLIGHTLY MISCIBLE Methanol (64.5°) Butyl acetate (126.5°) Methyl cyanide (82°) PAIRS OF SOLVENTS n-Butyl ether (142°) Methylene chloride (41°) e Y-Butyrolactone (206°) Methyl ethyl ketone (80°) borator Carbon tetrachloride (77°) Carbon tetrachloride with ethanolamine, ethylene glycol, formamide or water. Methyl isobutyl ketone (116°) Cellosolve (135°) Nitrobenzene (210°) Dimethyl formamide with cyclohexane or petroleum ether. Chlorobenzene (132°) Dimethyl sulphoxide with cyclohexane or petroleum ether. Nitromethane (101°) Chloroform (61°) Petroleum ether (various) Ethyl ether with ethanolamine, ethylene glycol or water. Cyclohexane (81°) Methanol with carbon disulphide, cyclohexane or petroleum ether. Pyridine (115.5°) Diethyl cellosolve (121°) Petroleum ether with aniline, benzyl alcohol, dimethyl formamide, dimethyl sulphoxide, Pyridine trihydrate (93°) Diethyl ether (34.5°) Tetrahydrofuran (64-66°) formamide, furfuryl alcohol, phenol or water. Dimethyl formamide (76°/39mm) "ater with aniline, benzene, benzyl alcohol, carbon disulphide, carbon tetrachloride, Toluene (110°) Dioxane (101°) hloroform, cyclohexane, cyclohexanol, cyclohexanone, ethyl acetate, isoamyl alcohol, methyl Trimethylene glycol (59°/11mm) Ethanol (78°) Water (100°) yl ketone, nitromethane, tributyl phosphate or toluene. Highly flammable, should be heated or evaporated on steam or electrically heated water baths only

_ (preferably in a nitrogen atmosphere).

N

% X ₁ in H ₂ 0 ~homoazeo	water + X ₁ bp (°C)	X ₁ bp (°C)	
~Phenol, 9 %	99.5	182	
~BnOH, 9 %	100	206	
HCl, 20 %	108.6	-85	
HCOOH, 23 %	107.1	101	
HBr, 47 %	126	-73	
pyridine, 57 %	93	116	
HNO ₃ , 67 %	120.7	86	
dioxane, 82 %	88	101	
MeCN, 85%	76	82	
iPrOH, 87 %	80.3	82.3	
tBuOH, 88 %	80	83	
THF, 95 %	65	66	
EtOH, 96 %	78.2	78.3	
H ₂ SO ₄ , 98 %	338	290	
% X_1 in H_2O	water + X_1	X ₁	% X ₁ in
heteroazeo	bp (°C)	bp (°C)	(upper, lower)
m-Xylene, 60 %	95	140	99.9;0.05
toluene, 80 %	84	110	99.95;0.06
Benzene, 91 %	69	80	99.9 ; 0.07
EtOAc, 92 %	70	77	97 ; 9
Cyclohex, 92 %	70	81	99.99 ; 0.01

Organic Azeotropes, components < 90%

500-

400-

300-

200-

100-

لە (℃)

А

MeOH: hex, EtOAc, benz, tol, cy, hex, CHCl3, CCl4, MeCN, acetone, iPrOH, THF MeOH has ~20:35:45 ternery azeo, MeOH/acetone/CHCl3-or-cy EtOH: EtOAc, benz, cy, tol, hex, CCl₄ iPrOH: EtOAc, benz, tol, cy, CCl₄ AcOH: toluene, pyridine Benzene: Cy, MeCN Acetone: CHCl₃, cy

Water Zeotropes : MeOH, AcOH, acetone.

Water barely-heteroazeotropes (>96%) : CH₂Cl₂, Et₂O, pentane, CHCl₃, iPr₂O, CCl₄

Н						Cher Hard	nical Iness										Не
12.84						i iai a											22.49
12.80																	21.57
Li	Be				65			1 (1)				В	С	N	0	F	Ne
7.80	10.4)	(10.98	12.75	14.79	16.38	18.25	22.49
4.77	9.03					vf(r	=0)					8.02	10.00	14.61	12.16	14.02	21.57
Na	Mg					Exp	ο. η					AI	Si	Р	S	CI	Ar
6.73	8.37				12			20				7.45	8.51	9.71	10.51	11.76	14.12
4.59	7.10											5.55	6.76	9.74	8.28	9.36	15.76
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5.33	6.27	5.50	5.98	6.06	6.12	6.20	6.16	7.38	7.28	6.91	8.60	7.28	8.35	8.99	9.53	10.41	12.23
3.84	6.09	6.37	6.75	6.22	6.10	7.93	7.75	7.22		6.49		5.57	6.67	8.98	7.73	8.45	14.00
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
4.94	5.59	8.31	6.95	7.13	6.33		8.01	8.72	8.87	7.04	7.74	6.49	8.12	7.85	8.25	8.89	10.29
3.69	5.64	5.91	6.21	5.87	6.34		6.31	6.32	7.78	6.27		5.49	6.23	7.56	7.04	7.39	12.13

- Acetylenic compounds can be explosive in mixtures of 2.5 to 80% with air. At pressures of 2 or more atmospheres, acetylene (C₂H₂) subjected to an electrical discharge or high temperature decomposes with explosive violence. Dry acetylides detonate on receiving the slightest shock. Acetylene must be handled in acetone solution and never stored alone in a cylinder.
- Aluminum chloride (AlCl₃) should be considered potentially dangerous. If moisture is present, there may be sufficient decomposition to form hydrogen chloride (HCl) and build up considerable pressure. If a bottle is to be opened after long storage, it should first be completely enclosed in a heavy towel. Ammonia (NH₃) reacts with iodine to give nitrogen triiodide, which detonates on touch. Ammonia reacts with hypochlorites to give chlorine. Mixtures of NH₃
- and organic halides sometimes react violently when heated under pressure. Ammonia is combustible. Inhalation of concentrated fumes can be fatal. Azides, both organic and inorganic, and some azo compounds can be heat and shock-sensitive. Azides such as sodium azide can displace halide from
- chlorinated hydrocarbons such as dichloromethane to form highly explosive organic polyazides; this substitution reaction is facilitated in solvents such as dimethyl sulfoxide (DMSO).
- Carbon disulfide (CS2) is both very toxic and very flammable; mixed with air, its vapors can be ignited by a steam bath or pipe, a hot plate, or a light bulb.
- *Chlorine* (Cl_2) is toxic and may react violently with hydrogen (H_2) or with hydrocarbons when exposed to sunlight.
- Chromium trioxide-pyridine complex (CrO₃ C₅H₅N) may explode if CrO₃ concentration is too high. Complex is prepared by addition of CrO₃ to excess C₅H₅N. Diazomethane (CH₂N₂) and related diazo compounds should be treated with extreme caution. They are very toxic, and the pure gases and liquids explode readily even from contact with sharp edges of glass. Solutions in ether are safer from this standpoint. An ether solution of diazomethane is rendered harmless by drop wise addition of acetic acid.
- Diethyl, diisopropyl, and other ethers, including tetrahydrofuran and 1,4-dioxane and particularly the branched-chain type of ethers, sometimes explode during heating or refluxing because the presence of peroxides has developed from air oxidation. Ferrous salts or sodium bisulfite can be used to decompose these peroxides, and passage over basic active alumina can remove most of the peroxidic material. In general, however, old samples of ethers should be disposed of after testing, following procedures for disposal of peroxides.
- Dimethyl sulfoxide (DMSO), (CH₃)₂SO, decomposes violently on contact with a wide variety of active halogen compounds, such as acyl chlorides. Explosions from contact with active metal hydrides have been reported. Dimethyl sulfoxide does penetrate and carry dissolved substances through the skin membrane.
- Dry benzoyl peroxide (C₆H₅CO₂)₂ is easily ignited and sensitive to shock. It decomposes spontaneously at temperatures above 50 °C. It is reported to be desensitized by addition of 20% water.
- Dry ice should not be kept in a container that is not designed to withstand pressure. Containers of other substances stored over dry ice for extended periods generally absorb carbon dioxide (CO2) unless they have been sealed with care. When such containers are removed from storage and allowed to come rapidly to room temperature, the CO_2 may develop sufficient pressure to burst the container with explosive violence.
- Drying agents, such as Ascarite® (sodium hydroxide coated silica), should not be mixed with phosphorus pentoxide (P2O5) because the mixture may explode if it is warmed with a trace of water. Because the cobalt salts used as moisture indicators in some drying agents may be extracted by some organic solvents, the use of these drying agents should be restricted to drying gases.
- Dusts that are suspensions of oxidizable particles (e.g., magnesium powder, zinc dust, carbon powder, and flowers of sulfur) in the air can constitute powerful explosive mixtures. These materials should be used with adequate ventilation and should not be exposed to ignition sources. When finely divided, some solids, including zirconium, titanium, Raney nickel, lead (such as prepared by pyrolysis of lead tartrate), and catalysts (such as activated carbon containing active metals and hydrogen), can combust spontaneously if allowed to dry while exposed to air and should be handled wet.
- Ethylene oxide (C2H4O) has been known to explode when heated in a closed vessel. Experiments using ethylene oxide under pressure should be carried out behind suitable barricades.
- Halogenated compounds, such as chloroform (CHCl₃), carbon tetrachloride (CCl₄), and other halogenated solvents, should not be dried with sodium, potassium, or other active metal; violent explosions usually result. Many halogenated compounds are toxic. Oxidized halogen compounds-chlorates, chlorites, bromates, and iodates-and the corresponding peroxy compounds may be explosive at high temperatures.
- Hydrogen peroxide (H₂O₂) stronger than 3% can be dangerous; in contact with the skin, it can cause severe burns. Thirty percent H₂O₂ may decompose violently if contaminated with iron, copper, chromium, or other metals or their salts. Stirring bars may inadvertently bring metal into a reaction and should be used with caution
- Liquid nitrogen-cooled traps open to the atmosphere condense liquid air rapidly. Then, when the coolant is removed, an explosive pressure buildup occurs, usually with enough force to shatter glass equipment if the system has been closed.
- Lithium aluminum hydride (LiAlH₄) should not be used to dry methyl ethers or tetrahydrofuran; fires from reaction with damp ethers are often observed. The reaction of LiAlH4 with carbon dioxide has reportedly generated explosive products. Carbon dioxide or bicarbonate extinguishers should not be used for LiAlH4 fires; instead such fires should be smothered with sand or some other inert substance.
- Nitrates, nitro and nitroso compounds may be explosive, especially if more than one nitro group is present. Alcohols and polyols can form highly explosive nitrate esters (e.g., nitroglycerine) from reaction with nitric acid.
- Organometallics are hazardous because some organometallic compounds burn vigorously on contact with air or moisture. For example, solutions of t-butyl lithium can cause ignition of some organic solvents on exposure to air.
- Oxygen tanks should be handled with care because serious explosions have resulted from contact between oil and high-pressure oxygen. Oil or grease should not be used on connections to an O_2 cylinder or gas line carrying O_2 .
- Ozone (O3) is a highly reactive and toxic gas. It is formed by the action of ultraviolet light on oxygen (air), and, therefore, certain ultraviolet sources may require venting to the exhaust hood. Ozonides can be explosive.
- Palladium (Pd) or platinum (Pt) on carbon, platinum oxide, Raney nickel, and other catalysts present the danger of explosion if additional catalyst is added to a flask in which an air-flammable vapor mixture and/ or hydrogen is present. The use of flammable filter paper should be avoided.
- Parr bombs used for hydrogenations should be handled with care behind a shield, and the operator should wear goggles and a face shield.
- Perchlorates should be avoided insofar as possible. Perchlorate salts of organic, organometallic, and inorganic cations are potentially explosive and have been set off either by heating or by shock. Perchlorates should not be used as drying agents if there is a possibility of contact with organic compounds or of proximity to a dehydrating acid strong enough to concentrate the perchloric acid ($HClO_4$) (e.g., in a drying train that has a bubble counter containing sulfuric acid). Seventy percent $HClO_4$ can be boiled safely at approximately 200 °C, but contact of the boiling undiluted acid or the hot vapor with organic matter, or even easily oxidized inorganic matter, will lead to serious explosions. Oxidizable substances must never be allowed to contact $HClO_4$. This includes wooden benchtops or hood enclosures, which may become highly flammable after absorbing $HClO_4$ liquid or vapors. Beaker tongs, rather than rubber gloves, should be used when handling fuming $HClO_4$.
- Permanganates are explosive when treated with sulfuric acid. If both compounds are used in an absorption train, an empty trap should be between them.
- *Peroxides* (inorganic) : when mixed with combustibles, barium, sodium, and potassium peroxides form explosives that ignite easily. *Phosphorus* (P) (red and white) forms explosive mixtures with oxidizing agents. White phosphorus should be stored under water because it ignites spontaneously in air. The reaction of phosphorus with aqueous hydroxides gives phosphine, which may either ignite spontaneously or explode in air.
- Phosphorus trichloride (PCI3) reacts with water to form phosphorous acid with HCl evolution; the phosphorous acid decomposes on heating to form phosphine, which may either ignite spontaneously or explode. Care should be taken in opening containers of PCl₃, and samples that have been exposed to moisture should not be heated without adequate shielding to protect the operator.
- Potassium (K) is much more reactive than sodium; it ignites quickly on exposure to humid air and, therefore, should be handled under the surface of a hydrocarbon solvent such as mineral oil or toluene (see Sodium). Potassium can form explosive peroxides on contact with air. If this happens, the act of cutting a surface crust off the metal can cause a severe explosion.
- Residues from vacuum distillations have been known to explode when the still was vented suddenly to the air before the residue was cool. Such explosions can be avoided by venting the still pot with nitrogen, by cooling it before venting, or by restoring the pressure slowly. Sudden venting may produce a shockwave that can detonate sensitive materials.
- Sodium (Na) should be stored in a closed container under kerosene, toluene, or mineral oil. Scraps of sodium or potassium should be destroyed by reaction with n-butyl alcohol. Contact with water should be avoided because sodium reacts violently with water to form hydrogen (H2) with evolution of sufficient heat to cause ignition. Carbon dioxide, bicarbonate, and carbon tetrachloride fire extinguishers should not be used on alkali metal fires. Metals like sodium become more reactive as the surface area of the particles increases. Prudence dictates using the largest particle size consistent with the task at hand. For example, use of sodium "balls" or cubes is preferable to use of sodium "sand" for drying solvents.
- Sodium amide (NaNH₂) can undergo oxidation on exposure to air to give sodium nitrite in a mixture that is unstable and may explode.
- Sulfuric acid (H₂SO₄) should be avoided, if possible, as a drying agent in desiccators. If it must be used, glass beads should be placed in it to help prevent splashing when the desiccator is moved. To dilute H₂SO₄, the acid should be added slowly to cold water. Addition of water to the denser H₂SO₄ can cause localized surface boiling and spattering on the operator.
- Trichloroethylene (Cl2CCHCl) reacts under a variety of conditions with potassium or sodium hydroxide to form dichloroacetylene, which ignites spontaneously in air and detonates readily even at dry ice temperatures. The compound itself is highly toxic, and suitable precautions should be taken when it is used.

1		12		⁴⁴ Ca	2.086%	⁶² Ni	3.63%	36		⁹⁸ Mo	24.13%	¹¹⁵ ln	95.71%	¹³¹ Xe	21.18%	62		68		¹⁸³ W	14.31%	²⁰² Hg	29.9%
¹ H	99.9885%		78.99%				0.92%		0.35%	44		50		¹³² Xe		¹⁴⁴ Sm	3.07%	¹⁶² Er	0.14%	¹⁸⁴ W	30.64%	-	6.87%
	0.0115%	²⁵ Mg			0.187%	29		⁸⁰ Kr	2.28%	¹⁰⁰ Ru	12.6%	¹¹² Sn	0.97%	¹³⁴ Xe		¹⁴⁷ Sm		¹⁶⁴ Er	1.61%		28.43%	81	
2			11.01%	21		⁶³ Cu	69.17%	⁸² Kr	11.58%	¹⁰¹ Ru		¹¹⁴ Sn			8.87%	¹⁴⁸ Sm	11.2%	¹⁶⁶ Er	33.61%	75		²⁰³ Tl	29.5%
³ He	0.000137%	13		⁴⁵ Sc	100%		30.83%	⁸³ Kr	11.49%	¹⁰² Ru	31.55%	¹¹⁵ Sn	0.34%	55		¹⁴⁹ Sm	13.8%	¹⁶⁷ Er	22.93%	¹⁸⁵ Re	37.4%	²⁰⁵ Tl	70.5%
⁴He	99.999863%	²⁷ Al	100%	22		30		⁸⁴ Kr	57%	¹⁰⁴ Ru	18.62%	¹¹⁶ Sn	14.54%	¹³³ Cs	100%	¹⁵⁰ Sm	7.38%	¹⁶⁸ Er	26.78%	¹⁸⁷ Re	62.6%	82	
3		14		⁴⁶ Ti	8.25%	⁶⁴ Zn	48.63%	⁸⁶ Kr	17.3%	⁹⁶ Ru	5.54%	¹¹⁷ Sn	7.68%	56		¹⁵² Sm	26.8%	¹⁷⁰ Er	14.93%	76		²⁰⁴ Pb	1.4%
⁶ Li	7.59%	²⁸ Si	92.23%	⁴⁷ Ti	7.44%		27.9%	37		98Ru	1.87%	¹¹⁸ Sn	24.22%	¹³⁰ Ba	0.106%	¹⁵⁴ Sm	22.8%	69		¹⁸⁴ Os	0.02%	²⁰⁶ Pb	24.1%
⁷ Li	92.41%	²⁹ Si	4.68%	⁴⁸ Ti	73.72%	⁶⁷ Zn	4.1%	⁸⁵ Rb	72.17%	⁹⁹ Ru	12.76%	¹¹⁹ Sn	8.59%	¹³² Ba	0.101%	63		¹⁶⁹ Tm	100%	¹⁸⁶ Os	1. 59 %	²⁰⁷ Pb	22.1%
4		³⁰ Si	3.09%	⁴⁹ Ti	5.41%	⁶⁸ Zn	18.75%	⁸⁷ Rb	27.83%	45		¹²⁰ Sn	32.58%	¹³⁴ Ba	2.42%	¹⁵¹ Eu	47.8%	70		¹⁸⁷ Os	1.96%	²⁰⁸ Pb	
⁹ Be	100%	15		⁵⁰ Ti	5.18%	⁷⁰ Zn	0.62%	38		¹⁰³ Rh	100%	¹²² Sn	4.63%			¹⁵³ Eu	52.2%	¹⁶⁸ Yb	0.13%	¹⁸⁸ Os		83	
5		³¹ P	100%	23		31		⁸⁴ Sr	0.56%	46		¹²⁴ Sn	5.79%	¹³⁶ Ba	7.85%	64		¹⁷⁰ Yb	3.04%	¹⁸⁹ Os	16.15%	²⁰⁹ Bi	100%
¹⁰ B	19.9%	16		⁵⁰ V	0.25%	⁶⁹ Ga	60.11%	⁸⁶ Sr	9.86%	¹⁰² Pd	1.02%	51		¹³⁷ Ba		¹⁵² Gd	0.2%	¹⁷¹ Yb	14.28%		26.26%	90	
¹¹ B	80.1%	³² S	94.93%	⁵¹ V	99.75%	⁷¹ Ga	39.89 %	⁸⁷ Sr	7%	¹⁰⁴ Pd	11.14%	¹²¹ Sb	57.21%	¹³⁸ Ba	71.70%	¹⁵⁴ Gd		¹⁷² Yb	21.83%	¹⁹² Os	40.78%	²³² Th	100%
6		³³ S	0.76%	24		32		⁸⁸ Sr	82.58%	¹⁰⁵ Pd	22.33%	¹²³ Sb	42.79%	57		¹⁵⁵ Gd		¹⁷³ Yb	16.13%	77		92	
¹² C	98.93%	³⁴ S	4.29%		4.345%			39		¹⁰⁶ Pd	27.33%	52				¹⁵⁶ Gd	20.5%	¹⁷⁴ Yb	31.83%	¹⁹¹ lr	37.3%	²³⁸ U	99.3%
¹³ C	1.07%	³⁶ S	0.02%	-	83.789%	⁷² Ge	27.54%	⁸⁹ Y	100%	¹⁰⁸ Pd	26.46%	¹²⁰ Te	0.09%	¹³⁹ La	99.9 1%	¹⁵⁷ Gd	15.7%	¹⁷⁶ Yb	12.76%	¹⁹³ lr	62.7%		
7		17		⁵³ Cr	9.501%			40		¹¹⁰ Pd	11.72%	¹²² Te		58		¹⁵⁸ Gd	24.8%	71		78			
¹⁴ N	99.632%	³⁵ Cl	75.78%	⁵⁴ Cr	2.365%	⁷⁴ Ge	36.28%	⁹⁰ Zr	51.45%	47		¹²³ Te	0.89%	¹³⁶ Ce	0.185%	¹⁶⁰ Gd	21.9%	¹⁷⁵ Lu	97.41%	¹⁹⁰ Pt	0.014%		
¹⁵ N	0.368%	³⁷ Cl	24.22%	25		⁷⁶ Ge	7.61%	⁹¹ Zr	11.22%	¹⁰⁷ Ag		¹²⁴ Te			0.251%	65		¹⁷⁶ Lu	2.59%		0.782%		
8		18		⁵⁵ Mn	100%	33		⁹² Zr	17.15%	¹⁰⁹ Ag	48.16%	¹²⁵ Te				¹⁵⁹ Tb	100%	72					
¹⁶ 0	99.757%		0.337%	26		⁷⁵ As	100%	⁹⁴ Zr	17.38%	48		¹²⁶ Te		¹⁴² Ce	11.11%	66		¹⁷⁴ Hf	0.16%				
¹⁷ 0	0.038%		0.063%	⁵⁴ Fe	5.845%	34		⁹⁶ Zr	2.8%	¹⁰⁶ Cd	1.25%	¹²⁸ Te		59		¹⁵⁶ Dy	0.06%	¹⁷⁶ Hf	5.26%	¹⁹⁶ Pt			
¹⁸ 0	0.205%	⁴⁰ Ar	99.60%	⁵⁶ Fe	91.754%			41		¹⁰⁸ Cd	0.89%	¹³⁰ Te	34.08%	¹⁴¹ Pr	100%	¹⁵⁸ Dy	0.1%	¹⁷⁷ Hf	18.6%	¹⁹⁸ Pt	7.16%		
9		19		⁵⁷ Fe	2.119%	⁷⁶ Se	9.37%	⁹³ Nb	100%	¹¹⁰ Cd	12.49%	53		60		¹⁶⁰ Dy	2.34%	¹⁷⁸ Hf	27.28%	79			
¹⁹ F	100%		93.26%	⁵⁸ Fe	0.282%		7.63%	42		¹¹¹ Cd	12.8%	¹²⁷ l	100%			¹⁶¹ Dy	1 8.9 %	¹⁷⁹ Hf	13.62%	¹⁹⁷ Au	100%		
10			0.012%	27			23.77%	¹⁰⁰ Mo			24.13%				12.2%		25.5%	¹⁸⁰ Hf	35.08%				
²⁰ Ne	90.48%	⁴¹ K	6.73%	⁵⁹ Co	100%	⁸⁰ Se	49.61%	⁹² Mo	14.84%	¹¹³ Cd	12.22%		0.09%	¹⁴⁴ Nd	23.8%	¹⁶³ Dy	24.9%	73			0.15%		
	0.27%	20		28		⁸² Se	8.73%		9.25%		28.73%		0.09%	¹⁴⁵ Nd		¹⁶⁴ Dy	28.2%	¹⁸¹ Ta	99.99 %		9.97%		
²² Ne	9.25%		96.9%		68.077%	35		⁹⁵ Mo	15.92%	¹¹⁶ Cd	7.49%		1.92%		17.2%	67		74			16.87%		
11			0.647%		26.223%		50.69%		16.68%	49			26.44%	¹⁴⁸ Nd		¹⁶⁵ Ho	100%		0.12%		23.1%		
²³ Na	100%	⁴³ Ca	0.135%	⁶¹ Ni	1.140%	⁸¹ Br	49.31%	⁹⁷ Mo	9.55%	¹¹³ ln	4.29%	¹³⁰ Xe	4.08%	¹⁵⁰ Nd	5.6%			¹⁸² W	26.5%	²⁰¹ Hg	13.18%		